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ABSTRACT 

In the era of precision oncology and publicly available datasets, the amount of 

information available for each patient case has dramatically increased. From clinical variables 

and PET-CT radiomics measures to DNA-variant and RNA expression profiles, such a wide 

variety of data presents a multitude of challenges. Large clinical datasets are subject to sparsely 

and/or inconsistently populated fields. Corresponding sequencing profiles can suffer from the 

problem of high-dimensionality, where making useful inferences can be difficult without 

correspondingly large numbers of instances. In this thesis we report a novel deployment of 

machine learning techniques to handle data sparsity and evaluate biomarkers in the form of 

unsupervised transformations of RNA data. Additionally, we evaluate the output of MutSig2CV 

from the Broad Firehose pipeline as a set of potential biomarkers to supplement our clinical 

predictive models. 

We apply preprocessing, MICE imputation, and sparse principal component analysis 

(SPCA) to improve the usability of more than 500 patient cases from The Cancer Genome Atlas 

Head and Neck Squamous Cell Carcinoma dataset (TCGA-HNSC) for enhancing oncological 

decision support for Head and Neck Squamous Cell Carcinoma (HNSCC). Imputation was 

shown to improve prognostic ability of sparse clinical treatment variables. Dimensionality 

reduction of RNA expression profiles via SPCA improved computation cost and model 

training/evaluation time without affecting classifier performance while simultaneously providing 

a convenient avenue for consideration of biological context via gene ontology enrichment 

analysis. Statistical comparison of mutation significance features with similar but meaningless 

data revealed that while the MutSig2CV data have predictive value for the problem of predicting 
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two-year recurrence-free survival, this value yielded no significant performance increases to 

simpler, clinical feature-based models. 
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PUBLIC ABSTRACT 

 In recent years, more data is becoming available for historical oncology case analysis. A 

large dataset that describes over 500 patient cases of Head and Neck Squamous Cell Carcinoma 

is a potential goldmine for finding ways to improve oncological decision support. Unfortunately, 

the best approaches for finding useful inferences are unknown. With so much information, from 

DNA and RNA sequencing to clinical records, we must use computational learning to find 

associations and biomarkers. 

 The available data has sparsity, inconsistencies, and is very large for some datatypes. We 

processed clinical records with an expert oncologist and used complex modeling methods to 

substitute (impute) data for cases missing treatment information. We used machine learning 

algorithms to see if imputed data is useful for predicting patient survival.  We saw no difference 

in ability to predict patient survival with the imputed data, though imputed treatment variables 

were more important to survival models. 

 To deal with the large number of features in RNA expression data, we used two 

approaches: using all the data with High Performance Computers, and transforming the data into 

a smaller set of features (sparse principal components, or SPCs). We compared the performance 

of survival models with both datasets and saw no differences. However, the SPC models trained 

more quickly while also allowing us to pinpoint the biological processes each SPC is involved in 

to inform future biomarker discovery. 

We also examined ten processed molecular features for survival prediction ability and found 

some predictive power, though not enough to be clinically useful.
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CHAPTER 1: INTRODUCTION 

Data generated for standard clinical oncology care has expanded exponentially.  In 

addition to well-known clinical variables like symptoms, stage and histology, tumor specimens 

are now routinely sequenced for a range of mutations that may be more or less well 

characterized. These molecular profiles may suggest sensitivity to a range of molecularly 

targeted agents. Furthermore, high resolution, functional and molecular imaging methods (such 

as positron emission tomography-computer tomography (PET-CT) and magnetic resonance 

imaging (MRI)) create quantitative metrics described through radiomics features. These also 

suggest profiles that can guide intervention and response. 

To facilitate the development of novel clinical decision support tools for oncologists, we 

have used publicly available data characterizing head and neck squamous cell carcinoma 

(HNSCC). These profiles present a large data analysis problem necessitating the use of machine 

learning, dimensionality reduction, and biological pathway analysis techniques. We utilize 

machine learning classifiers to predict patient two-year recurrence-free survival and evaluate a 

variety of feature sets to discover potential useful clinical biomarkers. Feature sets include 

combinations of patient clinical and molecular data. To improve utility of this dataset for 

oncological decision support, imputation and dimensionality reduction methods are used to 

transform feature sets to more usable and interpretable forms. 

In this thesis, we investigate the prognostic ability of clinical variables before and after 

imputation procedures, RNA expression data, transformations of RNA expression data, and 

representations of exomic tumor variation. Ultimately, models trained on clinical data performed 

best, with imputed clinical data performing similarly to non-imputed data. Dimensionality 

reduction of RNA expression variables resulted in no significant changes in classifier 
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performance, though was extremely helpful in reducing the necessary computation for training 

and evaluating models. A comparative analysis of clinical data and exomic tumor variation in the 

form of mutation significance data revealed that the while the mutation significance data does 

contain information predictive of patient survival, the clinical data is much more informative 

overall. 
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CHAPTER 2: BACKGROUND 

Machine Learning 

 Machine learning (ML) is a computational field that uses algorithms to learn from 

existing data to discover relationships and build predictive models. Classification is a specific 

type of machine learning problem in which the algorithm is tasked with classifying data points 

based on how previous data were classified. Essentially, individual data points consist of a set of 

features and a class label. A classifier is trained on the training data, building a predictive model 

to classify new data points. 

To evaluate the effectiveness of a predictive model, it must be tested on data that it has 

not “seen” before. One standard, systematic way of doing this is k-fold cross validation (CV), 

where the available data is split into k partitions, or folds. Models are trained k times using k-1 of 

the folds as training data, while the remaining fold serves as the testing data. The performance of 

the classifier is then evaluated based on how it classified points in the testing data during the 

validation runs. 

Some classification algorithms utilize hyperparameters, parameters that are set prior to 

training that affect the training and classification procedures. In order to choose these values in 

an unbiased fashion, elaborations on k-fold CV can be applied. In this thesis, a nested CV 

procedure is employed to tune model hyperparameters. As in standard ten-fold CV, the data is 

split into ten folds (or partitions) for the outer CV. In each iteration, a single fold acts as the 

testing data and the remaining nine folds act as the training data. However, within each fold of 

the outer CV, a repeated grid search CV procedure (Krstajic et al. 2014) is carried out on the 

training data to estimate the best hyperparameter(s). Then, a model is trained on all of the 

training data with the best hyperparameter set, and its generalization performance is estimated 
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using the testing data for that fold. The classifier’s ability to accurately predict the class labels of 

test data points is then estimated from performance within the ten folds, using a classifier 

performance metric. 

The area under the receiver operating characteristic curve (commonly denoted AUC) is 

the metric used to compare classifiers in this work. AUC is a very popular and commonly used 

classifier metric in the literature with an intuitive probabilistic interpretation: AUC is the 

probability that the classifier will score positive observations higher than negative observations. 

Mathematically, an AUC of 0.5 is equivalent to random guesses and is a standard baseline for 

this metric. 

Missing Value Imputation 

 A common problem in machine learning is missing values: the absence of certain features 

for some cases. These gaps in knowledge can be problematic for many algorithms. One way to 

handle these data is to exclude entries with missing values. However, this means that fewer data 

points are available for classifier training and evaluation, which can negatively affect classifier 

generalization performance. To work around this issue, imputation methods are often employed 

to fill in or infer missing values (Ambler, Omar and Royston 2007). Simple imputation methods 

such as mean/median imputation, mode imputation, and value replacement can be uninformative 

or biased.  

A more complex method, Multivariate Imputation by Chained Equations (MICE) 

(Groothuis-Oudshoorn 2011) minimizes bias by taking uncertainty into account during the 

imputation process, building multiple predictive models for each variable to be imputed. In the 

final step, the resulting multiple imputations are pooled together to produce a final imputation. 
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These procedures allow MICE to outperform single imputation methods (Zhang 2016, Ambler et 

al. 2007). 

Sparse Principal Component Analysis 

 Principal component analysis (PCA) is a widely-used dimensionality reduction technique 

that calculates orthogonal linear combinations of the original features in an attempt to capture the 

maximum variance in the resulting variables. This often results in principal components that are 

linear combinations of all original variables, reducing the interpretability of individual 

components. 

 Sparse principal component analysis (SPCA) follows a similar procedure, though places a 

sparsity constraint on the resulting components (Zou, Hastie and Tibshirani 2006). This limits 

the number of original variables that can contribute to each sparse principal component (SPC). In 

the case of gene expression analysis, this allows biological interpretation of SPCs by performing 

gene ontology enrichment analysis on the list of genes that contribute to each computed feature.  

Gene Ontology Enrichment Analysis 

 For the better part of two decades, the Gene Ontology project (The Gene Ontology 

Consortium et al. 2000, The Gene Ontology Consortium 2017) has been compiling a 

comprehensive resource of computable knowledge known as the Gene Ontology (GO). For a 

multitude of organisms, they have organized gene annotations regarding biological processes and 

biochemical activities that the gene or its gene products contribute to as well as the cellular 

components where the gene products are active. 

 Gene Ontology Enrichment Analysis (GOEA) is a technique where for a set of genes, 

their collective set of annotations are examined for terms that show up more often than expected 



www.manaraa.com

6  
 

by random chance, as determined by statistical tests. The resulting enriched GO terms allow 

interpretation of biological and biochemical context for the set of genes.  

The PANTHER annotation database (Mi et al. 2017) stores annotations for protein-

coding genes from the completely-sequenced genomes of 104 species. PANTHER supports 

GOEA for human genes and provides the API used by the Gene Ontology Consortium 

(http://geneontology.org). 

Existing HNSCC Literature 

 Current HNSCC literature often focuses on association of regulation of specific genes 

with prognosis (Wang et al. 2017, Liu et al. 2018). Other groups, however, acknowledge the 

need for large-scale integrative analysis to capture potential novel biomarkers (Huang et al. 

2016, Krempel et al. 2018, Hu et al. 2017). In other cancers, unsupervised transformations of 

molecular data (e.g. RNA sequencing, DNA methylation, miRNA sequencing) are known to be 

useful in machine learning-based survival prediction (Kim et al. 2018, Chaudhary et al. 2018). 

As of this writing, little work has been done with HNSCC in this manner. Literature on 

application of TCGA-HNSC Broad Firehose data and machine learning imputation of sparse 

clinical data is similarly unavailable. 

TCGA-HNSC Dataset 

The analyses presented are in part based on data generated by the Cancer Genome Atlas 

Research Network (TCGA): https://www.cancer.gov/tcga. TCGA is a coordinated effort to 

gather, share, and analyze next generation molecular sequencing data to improve our 

understanding of cancer mechanisms on a molecular level (Grossman et al. 2016). Data utilized 

in our analysis were obtained from the NCI Genomic Data Commons Data Portal 

(https://portal.gdc.cancer.gov/) and contained 528 TCGA-HNSC cases, including genotyping, 
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solid-tumor RNA expression, whole exome sequencing, methylation data, and clinical 

information. In this work, only RNA expression variables and clinical information are 

considered. Clinical data includes tumor grading information, patient demographic data, 

smoking/alcohol histories, and several features related to disease progression such as 

lymphovascular invasion and margin status. HPV status (based on ISH and P16 testing) was also 

included, as HPV status has strong implications for prognosis and tumor development (Bratman 

et al. 2016, Chakravarthy et al. 2016). These data have been contributed from a number of 

studies from varying institutions, utilizing multiple platforms and assays that span significant 

time intervals. The work presented here addresses the challenges presented by this common form 

of dataset in oncological research. 

Large, multi-institutional datasets present a variety of challenges to the development of 

methods and tools for clinical decision support. Namely, several clinical data fields in TCGA-

HNSC offered issues of sparsity and inconsistency. Out of fifteen identified clinical 

characteristics relevant to treatment regimen, none were populated for every patient. More 

specifically, the number of cases (from a total possible 528 cases in TCGA) with missing or 

unavailable data for these fields ranged from 88 to 504, with a mean of 349.5 and median of 342 

cases lacking data for each field. This is illustrated in Figure 1, where a vast majority of the 

treatment features had values available for less than half of the patient cases. 
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Figure 1: Violin Plot Describing Sparsity of Clinical Treatment Features 

The distribution of the number of patient cases with available data for fifteen descriptors of 
treatment regimen. 

 

In addition to the problem of missing data, several fields were populated inconsistently, 

with responses varying both due to human error (e.g. leading zeros in numeric fields) and 

varying convention (e.g. “External” vs. “EXTERNAL BEAM”). Such complications required 

extensive preprocessing and an expert system built using domain-specific knowledge to 

determine whether each patient had received a specific type of therapy. Even after preprocessing 

and condensing of treatment fields, issues of missing data persisted. Whether a patient had 

received radiotherapy and/or chemotherapy was unclear for 47% and 27% of cases, respectively. 

One possible technique for handling such problems is to exclude cases or variables with missing 

data, as was done previously with this dataset (Mroz, Patel and Rocco 2018). Due to the 

relevance of these features to our decision support goals, as well as the limited number of cases 
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from which to draw, we attempt to maximize utilization of the available data by imputing 

missing values. 

Molecular datatypes are often extremely high-dimensional. Feature selection and 

dimensionality reduction techniques are necessary steps when utilizing such data to best employ 

available computational resources. There are several strategies for selection and dimensionality 

reduction, including feature filtering, feature transformations, and wrapper methods such as 

sequential selection (Saeys, Inza and Larrañaga 2007). In this work, feature filtering and an 

unsupervised sparse PCA feature space transformation of 20,531 solid-tumor RNA expression 

variables were employed and evaluated in the context of TCGA-HNSC. 

Broad Firehose Data 

 
Figure 2: MutSig2CV Data Visualization 

Portion (a) contains the legend and a histogram, the former listing the different types of 
mutations identified and the latter displaying the number of patients found with each type of 
mutation in each gene. Genes are vertically sorted by mutation incidence. Portion (b) displays the 
MutSig output itself, with each column representing a single patient in the TCGA-HNSC dataset, 
sorted based on TP53 mutation, followed by FAT1 mutation, then CDKN2A mutation, etc. 
 
 The Broad Institute’s Genomic Data Analysis Center (GDAC) has created a large 

analysis pipeline, Broad GDAC Firehose, to systematically analyze data from TCGA. The results 

of these analysis runs are published as online interactive figures through “Firebrowse” 

(https://firebrowse.org/). One tool in this pipeline, MutSig2CV (or MutSig), analyzes annotated 

exomic tumor-normal variant data (Broad Institute TCGA Genome Data Analysis Center 2016).  
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For each patient in the dataset, MutSig2CV identifies genes that are significantly mutated above 

an expected baseline and reports the most deleterious disruptions to those genes (see Figure 2). 
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CHAPTER 3: APPROACH 

 

Figure 3: Flow Diagram Outlining the Approach of this Work 

Figure 3a) Clinical data preprocessing, imputation, and classification experiments. b) RNA 
expression preprocessing, classification experiments, and subsequent analyses. c) Evaluation of 
mutation significance features as a supplement to clinical prognostic models. Arrows between 
section a) and the other two sections indicate that clinical data (including imputed variables) are 
utilized in the models of sections b) and c). 

 Figure 3 illustrates a high-level view of the methods employed in this thesis. Section a) 

describes the processing and imputation of clinical data, as well as evaluation of the imputation 

method. Section b) details the filtering and transformation of RNA expression data followed by 

the model-building process and subsequent analyses. In section c), the investigation of 

MutSig2CV data for potential clinical biomarkers is depicted. 

Preprocessing, Condensing, and Missing Data Imputation (Figure 3a) 

Performing imputation on large datasets requires development of an expert model.  

Careful examination and correction of inconsistent and missing values was performed in 
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collaboration with expert oncologist Dr. John Buatti (Chair of Radiation Oncology, University of 

Iowa). A rubric for consistent preprocessing and condensing of the fifteen relevant treatment 

fields resulted in a much more concise and usable dataset. However, a significant fraction of the 

TCGA-HNSC patients still had uncertain status in their treatment regimens. To address this, 

Multivariate Imputation by Chained Equations (MICE) (Groothuis-Oudshoorn 2011) was 

utilized, and the resulting changes to classifier performance were measured. 

MICE builds predictive models for each missing variable to realistically impute entries 

based on the remaining predictors. For each missing entry, five intermediate imputations were 

performed using random forest models. Imputation models were trained using the clinical 

characteristics listed in Table 1, excluding the Surgery, Chemotherapy, and Radiation Therapy 

features. Patient outcomes were also excluded from the imputation to prevent information 

leakage. As the imputed treatment variables are binary, a majority vote was conducted of the five 

imputations to yield a final imputation. Using the imputed variables, the clinical characteristics 

utilized in imputation, and the outcome of two-year recurrence-free survival, two types of model 

were trained on the pre-imputation and post-imputation datasets. Missing values in the pre-

imputation set were assigned a third category, “Unavailable”. 

Naïve Bayes (NB) and Random Forest (RF) classifiers were selected for this evaluation, 

trained on the 24 clinical features listed in Table 1. These two were chosen to cover two major 

types of classifier: a pure conditional-statistical effort to predict survival (the Bayesian model),  

and a recursive partitioning-focused model (the Random Forest). NB does not consider 

interaction effects, whereas the RF model extensively leverages them. Earlier work suggests RF 

models are effective for this classification problem (Rendleman 2017). The pre- and post-
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imputation models were compared with respect to both predictive performance and variable 

importance.  

Table 1: List of Clinical Data Features 

Age Alcohol consumption per day Organ of Tumor Origin 

Ethnicity Lymphovascular Invasion Margin Status 

Tobacco Smoking History Tobacco Pack-Years Smoked Perineural Invasion 

Inferred HPV Status Extracapsular Spread Smokeless Tobacco Average 

per day 

Gender (sex) Race Tumor Grade 

AJCC Pathologic Nodes (PN) AJCC Clinical Tumor (CT) AJCC Clinical Nodes (CN) 

AJCC Clinical Metastasis 

(CM) 

AJCC Pathologic Metastasis 

(PM) 

AJCC Pathologic Tumor 

(PT) 

Radiation Therapy (imputed 

or non-imputed) 

Chemotherapy (imputed or 

non-imputed) 

Surgery 

RNA Expression Experiments (Figure 3b) 

In the TCGA-HNSC dataset, solid-tumor expression was available for 520 of the 528 

patients. With a feature set of 20,531 solid-tumor RNA expression variables, seven tumor 

grading variables, and the random forest-imputed treatment variables, several RF classifiers were 

trained to predict two-year recurrence-free survival. The classifiers varied in feature sampling 

and tree construction procedures: a standard RF, a weighted subspace RF (WSRF) (Zhao, 

Williams and Huang 2017), and a conditional inference random forest (CIRF) (Strobl et al. 

2007). The WSRF weights randomly sampled variables based on their correlation with the output 

procedure, increasing the probability that a given tree will sample variables with high univariate 

correlation to patient survival. The CIRF utilizes a conditional inference procedure for tree 

construction that aims to eliminate bias in recursive partitioning and reduce computation time 

with stopping criteria. 
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With the full set of RNA expression data, the feature set was first refined through two 

filters: a univariate, near-zero variance filter to remove uninformative features and a multivariate 

correlation filter to remove features with correlation greater than 0.9. These filters reduced the 

feature set from 20,531 gene expression variables to approximately 18,000. 

In addition, a dimensionality reduction was performed via Sparse Principal Component 

Analysis (SPCA) (Zou et al. 2006) which has the potential to improve interpretability of the 

model and reduce training time. Interpretability is improved because each sparse principal 

component (SPC) has only a handful of genes that contribute to it, allowing connections to be 

drawn between individual SPCs and the biological processes related to their constituent genes. 

One significant problem of PCA-based data reduction is choosing the number of components. If 

too many components are retained, this transformation may be amplifying noise. If too few are 

included, valuable predictive information may be excluded. To estimate information inclusion, 

percent explained variance is examined in Figure 4. Here, we chose the number of principal 

components to be ten, as this number of components yielded the best classifier performance over 

the three RF classifiers while explained approximately 90% of the variance. The resulting ten 

SPCs (below labeled X1-X10) were constructed and the feature set supplemented with the same 

grading and treatment features as used with the full set of RNA variables. The same set of RF 

classifiers was trained on this data to predict two-year recurrence-free survival. 

After training, variable importance for the 10-component SPCA feature set was evaluated 

for each of the classifiers. The genes that comprise the most and least important variables were 

examined with a gene ontology enrichment analysis (GOEA) (The Gene Ontology Consortium et 

al. 2000, The Gene Ontology Consortium 2017). Analysis was conducted with the biological 

process annotation dataset from the PANTHER Classification System (ontology database 
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released 2019-02-02), using their enrichment analysis tool (Mi et al. 2017). Enriched terms for 

high- and low-importance SPCs are identified and compared, and processes associated with 

high-importance SPC gene sets but not associated with low-importance SPC gene sets are 

described. 

 

 

Figure 4: SPCA Percent Explained Variance 

Cumulative percent explained variance is reported as it relates to the number of sparse principal 
components. The black vertical line indicates the value used for transforming RNA expression 
into the SPCA feature set for these experiments. 

Mutation Significance Experiments (Figure 3c) 

Comparison of Classifiers Trained on Clinical and MutSig Data 

 Classifiers were trained on datasets consisting of the ten gene-based MutSig features and 

also a combination of the imputed clinical data and MutSig features. The full list of clinical and 

mutation significance features used in this thesis can be found in Tables 1 and 2, respectively. 

The legend for Table 2 also describes some feature selection and preprocessing of the mutation 

significance features. The classifier performance metric for these each of the classifiers is 

reported. 
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Table 2. List of MutSig2CV Genes  

The ten most-populated genes were chosen from the MutSig2CV data. All gene features other 
than TP53 were considered too sparsely-populated for informative categorical distinction (77%-
93% with “No Mutation”), and as such were collapsed into binary variables (“Mutation” or “No 
Mutation”) to prevent overfitting. The TP53 mutation significance feature itself exhibits a 
distribution within which individual categories are relatively well-populated, with only 32% of 
examples having “No Mutation”. 

TP53 FAT1 

CDKN2A NOTCH1 

PIK3CA MLL2 

NSD1 CASP8 

HUWE1 THSD7A 

Comparison of Classifiers Trained on MutSig Data and Shuffled MutSig Data 

 To examine the mutation significance data more directly, the mutation significance 

features were permuted by shuffling values randomly within each feature. These shuffled 

mutation significance features were then used both alone and with the actual clinical features to 

train classifiers. A total of ten shuffled mutation significance datasets were created and used in 

this manner. The mean and standard deviation of the classifier metrics for these classifiers were 

calculated, and one-sided t-tests were performed with the null hypothesis that the classifiers 

trained with the actual mutation significance data were not more predictive than the classifiers 

trained with randomly-shuffled mutation significance data. This experimental design results in 

two comparisons of the MutSig data with the shuffled data, one including the clinical features 

and one considering only the MutSig features. 

T-values were calculated with 𝑡	 = 	 $̅&'(
)/√,

, where 𝑥̅ is the classifier performance for the 

classifiers trained with actual mutation significance data, μ0 is the mean of the metrics calculated 

for the classifiers trained with shuffled mutation significance data, σ is the standard deviation of 
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the shuffled metrics, and n is the number of samples (in this case 10). P-values were obtained for 

the one-sided significance tests with the Microsoft Excel function TDIST. 

Classifier Training and Hyperparameter Tuning 

 A nested cross validation (CV) is used to tune hyperparameters and estimate out-of-

sample performance, a measurement of how well a classifier would generalize if it were to be 

trained on the entire dataset. Figure 5 further describes nested CV. Classifier performance is 

measured using AUC. 

 

Figure 5: Diagram of Nested Cross Validation 

A five-fold nested CV is depicted. Before training a model on the training data in each iteration 
of the outer CV, an inner CV is performed on the training set with a repeated grid-search to tune 
the optimal hyperparameters. These hyperparameters are then used to train the classification 
model in the outer CV and generalization performance is estimated using the testing set. 
 

 For the missing data imputation, models were trained and tested in Weka 3.9.1 (Frank, 

Hall and Witten 2016) with ten-times repeated ten-fold cross validation as the internal CV 

procedure using the “CVParameterSelection” wrapper method. Repeated CV reduced bias due to 

random partitioning (Borra and Di Ciaccio 2010). One hyperparameter was tuned for the 

Random Forest, the number of randomly chosen predictors to be considered for each split. 
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 In the RNA expression experiments, three different RF classification procedures are 

considered. Classifier training and evaluation was handled using the R package caret (Kuhn 

2015). Classifiers trained on the full-RNA data were evaluated with the internal CV procedure as 

ten-fold CV, and those trained with the dimensionality-reduced data were evaluated (within each 

fold) using five-times repeated ten-fold CV. Preprocessing was handled within each CV iteration 

with the R recipes package (Kuhn and Wickham 2018). For these RF models, the number of 

randomly-sampled predictors for each tree was varied over a span of values appropriate for each 

feature set. 

 In the MutSig analyses, Naïve Bayes and Random Forest classifiers were trained on the 

datasets using Weka 3.9.1 and a ten-times repeated ten-fold CV internal CV procedure, 

performing nested CV with the “CVParameterSelection” wrapper method. As in the imputation 

experiment, only the one hyperparameter for the Random Forest model was tuned. 

Variable/Feature Importance 

Feature importance is a measurement of how perturbations to variables affect classifier 

performance. A conditional variable importance procedure has been applied in this work. 

Conditional importance involves not only univariate perturbations, but conditional perturbation 

of variables and the variables with which they correlate (Strobl et al. 2008). For the imputation 

experiments, the correlation threshold was set at 0.2 for computational viability. In analysis of 

SPCA variables, this threshold was set to 0.05 as the feature space is smaller. Importance of 

categorical variables can also be biased in this scenario (depending on the number of categories), 

so a conditional inference random forest model is used to reduce this bias (Strobl et al. 2007). 

Reported importance values are relative to the most important variable in each case and were 

averaged over 50 runs to ensure stability. 
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CHAPTER 4: RESULTS 

Imputation Evaluation 

As shown in Table 3, imputation of treatment fields using MICE yielded no significant 

change in AUC. Changes in relative importance values can be seen in Table 4.  

 

Table 3. Effect of Imputation on Classifier Performance Using the Imputed and Non-imputed 
Datasets 

 

Considering Figure 6, the relative importance of treatment features doubled as a result of 

imputation. Interestingly, changes were observed in non-imputed features as well, with some 

features (HPV status, margin status) becoming more important and others (Pathologic Tumor 

status grade, tumor grade, gender, ethnicity, alcohol consumption) dropping in importance.  

 

Classifier Dataset AUC 

Naïve Bayes 
Pre-imputation 0.633 ± 0.077 
Post-imputation 0.675 ± 0.063 

Random Forest 
Pre-imputation 0.668 ± 0.062 
Post-imputation 0.658 ± 0.075 
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Figure 6: Effect of MICE Imputation on CIRF Conditional Variable Importance When Predicting 
Two-Year Recurrence-Free Survival 

Importance values are relative to the most important variable. Imputed treatment features are 
denoted with *, and several common prognostic clinical variables are shown for comparison. 

 

RNA Expression Experiments 

Table 4 shows that classifier performance was slightly higher (though not significantly 

so) with the dimensionality-reduced dataset. The best-performing classifier overall appears to be 

the CIRF, which was middling in runtime. A drastic difference in evaluation runtime is observed 

(as expected) between the Full RNA feature set (20,541 predictors) and the SPCA feature set (20 

predictors). With both feature sets, the non-standard RF variants required more compute time 

and computational resources than the standard RF classification procedure. 
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Table 4: Classifier Performance with Full RNA Expression Data and SPCA Features 

 AUC and approximate runtime values for the RNA expression feature sets. The best value for 
each row is bolded. Here, runtimes are evaluation times for a given classifier on a given feature 
set via ten-fold nested cross validation with the internal cross validation procedures as described 
in Chapter 3. Computations performed on the University of Iowa’s Argon High-Performance 
Computing Cluster. 

Datasets Classifiers: 
RF WSRF CIRF 

AUCs 
Full RNA 0.632 ± 0.106 0.596 ± 0.038 0.629 ± 0.105 

SPCA 0.640 ± 0.128 0.626 ± 0.114 0.658 ± 0.044 
Nested CV Runtimes ---  --- 

Full RNA 52 hr 185 hr 85 hr 
SPCA 12 min 1.9 hr 30 min 

 

 

Table 5: Percent Explained Variances for the Sparse Principal Components 

 The 10 SPCs account for 89.05% of the original data’s variance. * denotes SPCs chosen for 
further analysis based on variable importance (see Figure 7). 

SPC Percent Explained 
Variance 

X1* 53.84% 
X2* 9.43% 
X3* 9.19% 
X4 5.31% 
X5 3.14% 
X6* 2.27% 
X7* 2.04% 
X8 1.67% 
X9* 1.24% 
X10 0.93% 

 

Considering Figure 7, SPC X6 is favored most by the conditional inference importance 

metric. SPCs X9 and X2 are the next-highest ranked. X7, X1, and X3 were the least important 
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variables to the CIRF classifier, indicating they had little-to-no effect on classification 

performance. The genes composing these six SPC features were selected for further examination 

via GOEA (see Table 6). It is worth noting that within the gene sets constituting the SPCs, many 

repeats of genes and gene families are present. This is an artifact of gene family co-expression, 

and the tendency of SPCA to focus on genes with high variance.  

 

 

Figure 7: SPCA Relative CIRF Conditional Variable Importance 

Importance values for the 10 SPCs, labeled X1-10, are reported. In cases where no importance is 
reported for an SPC, its effect on classifier performance is negligible. 
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Table 6: SPCA Gene Set Enriched Gene Ontology Terms 

For each SPC gene set, gene names and Entrez gene IDs are listed alongside the PANTHER 
annotation terms found to be enriched in the corresponding gene set are reported. Genes are 
listed in order of increasing order of p-value, with all p < 0.001. * indicates that some lower level 
hierarchical GO terms were omitted for brevity. 

SPC Contributing Genes (Gene Name|GeneID) Enriched GO Biological Processes 
 
X6 

ADAM6|8755, FBP4|2167, FN1|2335, GAPDH|2597, 
KRT13|3860, KRT16|3868, KRT17|3872, LOC96610|96610 

Cornification 

 
 
X2 

COL1A1|1277, COL1A2|1278, COL3A1|1281, FN1|2335, 
KRT13|3860, KRT14|3861, KRT16|3868, KRT17|3872, 
KRT5|3852, KRT6A|3853, SPARC|6678 

Cornification*, keratinocyte differentiation, 
wound healing, cell-substrate junction 
assembly*, collagen fibril organization*  

 
 
X9 

ACTB|60, ADAM6|8755, COL1A1|1277, COL1A2|1278, 
FN1|2335, LAMC2|3918, TGFBI|7045 

Skin morphogenesis, protein 
heterotrimerization, platelet activation*, cell 
junction assembly, cell junction organization, 
extracellular matrix organization, 
extracellular structure organization, blood 
vessel development*, cell adhesion 

X7 ADAM6|8755, FABP4|2167, KRT16|3868, KRT17|3872, 
KRT5|3852, KRT6B|3854, LOC96610|96610, PI3|5266 

Cornification*, programmed cell death, cell 
death, keratinization, skin development 

X1 KRT14|3861, KRT16|3868, KRT17|3872, KRT5|3852, 
KRT6A|3853, KRT6B|3854, KRT6C|286887, S100A9|6280 

Cornification*, intermediate filament 
cytoskeleton organization*, cell death, hair 
cycle 

X3 COL1A1|1277, COL1A2|1278, COL3A1|1281, KRT13|3860, 
KRT14|3861, KRT16|3868, KRT17|3872, KRT5|3852, 
KRT6A|3853, KRT6B|3854, KRT6C|286887, SFN|2810 

Cornification*, multicellular organism 
development, intermediate filament 
cytoskeleton organization*, collagen fibril 
organization 

Mutation Significance Experiments 

Comparison of Classifiers Trained on Clinical and MutSig Data 

From Table 7, the classifiers trained with the clinical data outperform those trained with 

only the MutSig data. Additionally, there is negligible change in classifier performance when the 

clinical features are supplemented with the MutSig features. 
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Table 7: MutSig2CV Experiment 1: Classifier performance (AUC) with the Clinical, MutSig, 
and Clinical + MutSig feature sets. 

Comparison of Classifiers Trained on MutSig Data and Shuffled MutSig Data 

 In the second experiment, the comparison of classifiers trained with original MutSig data 

and the shuffled MutSig data in the presence of clinical data shows inconclusive results. The 

Bayesian statistical model showed a significant difference, but the Random Forest model results 

suggest that RF classifiers trained with the real data performed no better than those trained with 

the manufactured data. When this comparison was performed with the MutSig and shuffled data 

in isolation, the Naïve Bayes classifier showed around the same significance and the RF models 

showed that the real MutSig data significantly outperformed the shuffled data. 

Table 8: MutSig2CV Statistical Test Results 

Results of t-tests comparing performance of classifiers trained on original datasets to those 
trained with permuted mutation significance data. P-values where the null hypothesis was 
rejected are denoted with *. 

Dataset Naïve Bayes Random Forest 

Clinical + MutSig2CV *𝑝 = 4.84 ∗ 10&5 𝑝 = 0.306 

MutSig2CV Only *𝑝 = 4.63 ∗ 10&5 *𝑝 = 5.72 ∗ 10&; 

 

CHAPTER 5: DISCUSSION 

Imputation Evaluation 

With imputation, classifier performance is not negatively affected, which is expected 

based on other studies using the MICE imputation technique (Ambler et al. 2007, Deng et al. 

Dataset Naïve Bayes Random Forest 

Clinical Only 0.675 ± 0.063 0.658 ± 0.072 

MutSig2CV Only 0.573 ± 0.087 0.609 ± 0.084 

Clinical + MutSig2CV 0.679 ± 0.069 0.660 ± 0.063 
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2016). Increases in variable importance after imputation indicate that the treatment variables 

more effectively predict patient outcomes after application of MICE. Because importance is 

calculated with a random forest, the importance changes in non-imputed variables might indicate 

that MICE imputation of the treatment variables modifies the landscape of variable interactions 

to a high enough degree that feature selection within trees is affected. 

RNA Expression Experiments 

 For this prediction problem, the dimensionality-reduced features (SPCs) allow 

comparable classifier performance while drastically reducing runtime and necessary 

computation. Though not quantified here, memory requirements were also much lower for the 

dimensionality-reduced data. Additionally, this reduction allowed us to identify gene set 

candidates for GOEA. In both important and not-important SPCs, the GO term “cornification” (a 

form of cell death in squamous epithelial cells) is found, indicating that this biological process is 

related to high-variance genes in this dataset. Terms found only in the high-importance SPC gene 

sets are related to cell motility (cell adhesion, extracellular interactions), immune response, cell 

growth, and blood vessel development. Activity of genes involved in these processes could be 

indicative of a cancer’s ability to survive, grow, and metastasize, suggesting that these SPCA 

transformed RNA data contain useful information about underlying relationships between solid-

tumor expression and two-year recurrence-free survival. 

Mutation Significance Experiments 

 From Table 8, it is clear that the MutSig2CV data has some prognostic value. The results 

in Table 7, however, suggest that the predictive power in these features is significantly less than 

that found in the clinical data. Considering that the Naïve Bayes classifier found statistically 

significant differences though the RF classifier showed no difference between the models 
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compared in the presence of clinical data, it appears that the shuffled data is more of a detriment 

to the Naïve Bayes model than in the RF model, which directly considers interaction effects. 

Therefore, it is likely that the information provided by the MutSig2CV features is also provided 

by the clinical data, as the model considering variable interactions was not significantly more 

predictive with real data than shuffled data. 
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CHAPTER 6: CONCLUSIONS 

In modern oncological research, TCGA datasets present significant large data analysis 

challenges, from clinical parameter sparsity to high dimensionality. Facing these problems 

requires significant preprocessing and machine learning modeling to uncover new knowledge. A 

multivariate imputation method (MICE), SPCA dimensionality reduction, and an SPC-focused 

GOEA are presented in the context of TCGA-HNSC clinical and RNA expression variables to 

improve usability of data for future HNSCC decision support. 

As others (Ambler et al. 2007, Deng et al. 2016) have found, MICE is an effective 

method for imputing data while introducing minimal bias. In this case, it improved the variable 

importance of imputed features while altering the importance of other variables through 

interaction effects. Most importantly, the imputation provided a complete set of treatment 

variables to incorporate into our models, furthering our ability to evaluate the effectiveness of 

potential biomarkers in later analyses. 

Unsupervised transformation of RNA expression data via SPCA was extremely useful in 

improving interpretability of survival models and biomarker identification by limiting the 

number of genes contributing to each principal component and allowing for a nuanced 

examination of the underlying biological processes. The biological processes found to be 

associated with high-importance SPCs may be useful in future feature selection for biomarker 

discovery. Additionally, the SPCA functioned well as a dimensionality reduction technique, as 

the dimensionality reduced features allowed for significantly lower computation time without 

significantly affecting classifier performance. From the literature and these analyses, 

unsupervised transformations of RNA expression data seem a viable option for future integration 

of molecular data into HNSCC clinical predictive models. 
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The output of MutSig2CV from the Broad GDAC Firehose pipeline was examined as a 

potential feature set for improving predictive power of prognostic models. It appears that while 

the data has value for predicting two-year recurrence-free survival, this value is either already 

present in the supplied clinical data or simply dwarfed by the predictive value in the clinical 

features. Therefore, the mutation significance features, in their current state with these methods, 

cannot be utilized to improve clinical prognosis estimation. 

Future work will consider the effect of clinical imputation on models also utilizing 

molecular data, both with SPCA transformations and other unsupervised feature transformations 

methods such as denoising autoencoders. Additionally, biomarker evaluation will be expanded to 

directly consider right-censored survival. 
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